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Abstract. Our main result is the non-existence of strongly regular graph with parameters

(76, 30, 8, 14). We heavily use Euclidean representation of a strongly regular graph, and develop

a number of tools that allow to establish certain structural properties of the graph. In particular,

we give a new lower bound for the number of 4-cliques in a strongly regular graph.

1. Introduction

Let G = (V,E) be a finite, undirected, simple graph with vertices V and edges E. The graph

G is strongly regular with parameters (v, k, λ, µ) if G is k-regular on v vertices, such that any two

adjacent vertices have λ common neighbors, and any two non-adjacent vertices have µ common

neighbors. It is not known in general for which parameters (v, k, λ, µ) strongly regular graphs

exist. One can easily deduce certain necessary conditions on the parameters (see Section 2),

but the pattern of the known results is still far from being understood, see [Bro] for a list of

results for v ≤ 1300. There are only three unknown cases for v < 76, namely, (65, 32, 15, 16),

(69, 20, 7, 5), and (75, 32, 10, 16). The following theorem is our main result which settles the

next unknown case.

Theorem 1.1. There is no strongly regular graph with parameters (76, 30, 8, 14).

Some numerical evidence for non-existence of this graph was given in [Deg07, Section 6.1.6,

p. 204], which involved a significant (and not exhaustive) computer search.

Let us outline the structure of the proof. Assuming the existence of such a graph G, we first

show that it must contain a 4-clique (complete graph on 4 vertices) as a subgraph. This is

a crucial first step, which then allows to show that G contains a much larger “nice” induced

subgraph: either a (40, 12, 2, 4) strongly regular graph, or a 16-coclique (empty graph on 16
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vertices), or a complete bipartite graph K6,10 (two parts of 6 and 10 vertices, with an edge

between vertices if and only if the vertices are from different parts). In what follows, by a

subgraph we always mean the induced subgraph. Each of these three cases is treated differently

but ultimately leads to a contradiction. The last two cases were completed using machine-

assisted searches with total running time of under two hours on a personal computer. We would

like to emphasize that our methods are primarily analytical and establish strong structural

properties of the graph. Use of computer is minor as we need to run a very insignificant

verification.

To establish such strong structural properties of G, we developed a number of tools which

use the Euclidean representation of a strongly regular graph as a system of unit vectors in a

finite-dimensional Euclidean space (see Section 2 for the definitions). The tools are presented in

Section 4 with complete statements and proofs. Most of the statements involve quite technical

computations, so for convenience we implemented these computations as easy-to-use functions

in SageMath ([S+13]) computer algebra system, see [BPR] for downloadable worksheets. While

our tools may be applied for any strongly regular graph, we observed non-trivial corollaries

mostly for graphs which have 2 as an eigenvalue.

Another result of possibly independent interest is a lower bound on the number of 4-cliques

in a strongly regular graph, see Theorem 3.3. The proof is based on Euclidean representation

and on a relation to spherical harmonic polynomials. The bound that we obtain contains quite

lengthy expression involving parameters of the strongly regular graph, so we provide a table

of the resulting (numerical) bounds on the number of 4-cliques for all admissible v ≤ 1300

in [BPR]. While for some situations this estimate may be trivial or easy-to-obtain by other

methods, for our (76, 30, 8, 14) strongly regular graph it shows that there exist at least 39 4-

cliques, and we do not know any other proof for this special case (for the proof of Theorem 1.1

we only need the existence of one 4-clique).

The paper is organized as follows. We describe some preliminaries and notations in Section 2.

Then we establish our lower bound on the number of 4-cliques (Theorem 3.3) in Section 3.

Auxiliary tools arising from the Euclidean representation of the strongly regular graphs are

stated and proved in Section 4, which also includes some specific computations for the case

(76, 30, 8, 14). In Section 5.1, we reduce Theorem 1.1 to one of the three main cases, which are

treated in Sections 6, 7, and 8.
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2. Preliminaries

Throughout this section let G = (V,E) be a strongly regular graph (SRG) with parameters

(v, k, λ, µ). By N(i) := {j : (i, j) ∈ E} we will denote the set of all neighbors of a vertex i ∈ V .

2.1. Spectral properties. The incidence matrix A of G has the following properties:

(2.1) AJ = kJ, and A2 + (µ− λ)A+ (µ− k)I = µJ,

where I is the identity matrix and J is the matrix with all entries equal to 1. These conditions

imply that

(2.2) (v − k − 1)µ = k(k − λ− 1).

Moreover, the matrix A has only three eigenvalues: k of multiplicity 1, a positive eigenvalue

(2.3) r =
1

2

(
λ− µ+

√
(λ− µ)2 + 4(k − µ)

)
of multiplicity

(2.4) f =
1

2

(
v − 1− 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

)
,

and a negative eigenvalue

(2.5) s =
1

2

(
λ− µ−

√
(λ− µ)2 + 4(k − µ)

)
of multiplicity

(2.6) g =
1

2

(
v − 1 +

2k + (v − 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

)
.

Clearly, f and g should be integer. This together with (2.2) gives a family of suitable parameters

(v, k, λ, µ) for strongly regular graphs. The reader can refer to [BH12, Section 9.1.5] for the

proofs of the above relations.

For (v, k, λ, µ) = (76, 30, 8, 14), we have rf = 257 and sg = (−8)18.
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2.2. Euclidean representation. Now we will construct an Euclidean representation of G in

Rg. Take the columns {yi : i ∈ V } of the matrix A− rI and let xi := zi/‖zi‖, where

zi = yi −
1

|V |
∑
j∈V

yj, i ∈ V,

and ‖zi‖ := (zi · zi)1/2. Here and below x · y will denote the dot product of x and y in the

corresponding Euclidean space, and |V | denotes the number of elements in a set V .

It is straightforward to verify that this set of vectors {xi : i ∈ V } ⊂ Rg satisfies the following

two properties. First, there are only two possible non-trivial values of the dot product depending

on adjacency:

(2.7) xi · xj =


1, if i = j,

p, if i and j are adjacent,

q, otherwise,

where p and q are real numbers from the interval (−1, 1), namely

(2.8) p = s/k, and q = −(s+ 1)/(v − k − 1).

The second property is that the set {xi : i ∈ V } forms a spherical 2-design, i.e.,

(2.9)
∑
i∈V

xi = 0, and
∑
i∈V

(xi · y)2 =
|V |
g

for any y, ‖y‖ = 1.

For more information on the relations between the Euclidean representation of strongly regular

graphs and spherical designs see, e.g., [Cam04].

One of the key facts that we will use for developing our tools is the following evident propo-

sition.

Proposition 2.1. Each subset {xi : i ∈ U}, where U ⊂ V , has a non-negative definite Gram

matrix (xi · xj)i,j∈U of rank equal to the rank of the linear span of {xi : i ∈ U}, which is

at most g. If A is the adjacency matrix of the subgraph induced by U , then (xi · xj)i,j∈U =

pA+ I + q(J − I − A).

Another observation that we will use is that

(2.10) xi =
1

kp

∑
j∈N(i)

xj, for each i ∈ V.
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Indeed, for arbitrary l ∈ G, it straightforward to check that (kpxi−
∑

j∈N(i) xj) · xl = 0 (using,

in particular, (2.2) and (2.8)).

Remark 2.2. One can construct an Euclidean representation of G in Rf which will posses similar

properties. This can be done by considering the complement of G, which is a strongly regular

graph with parameters (v, v − 1− k, v − 2k + µ− 2, v − 2k + λ); then f and g interchange.

For (v, k, λ, µ) = (76, 30, 8, 14), the Euclidean representation in R18 has dot products (p, q) =

(− 4
15
, 7
45

), and the Euclidean representation in R57 (obtained through the complement) has dot

products (p, q) = ( 1
15
,− 1

15
), see (2.7) and (2.8).

2.3. Vertex partitions. Let π = {G1, . . . , Gl} be a partition of a subset Ṽ ⊂ V of the vertices

of a graph G = (V,E). We define the edge matrix Eπ = (ai,j)
l
i,j=1 of the partition π by assigning

ai,j to be the number of edges (x, y) ∈ E such that x ∈ Gi and y ∈ Gj. In particular, ai,i is the

number of edges in the subgraph induced by Gi. As Eπ is symmetric, in what follows we will

often not list the entries that are below main diagonal.

A partition π is equitable if there exist non-negative integers bi,j, 1 ≤ i, j ≤ l, such that any

vertex x ∈ Gi has exactly bi,j neighbors in Gj, regardless of the choice of x. The degree matrix

of π is Dπ := (bi,j). Clearly, there is a relation to the entries of the edge matrix: ai,i = bi,i|Gi|/2,

and ai,j = |Gi|bi,j = |Gj|bj,i for i 6= j. Any graph possesses an equitable partition of all vertices

where each part consists of exactly one vertex: l = |V | and |Gi| = 1, then Dπ coincides with

the adjacency matrix of G. We are primarily interested in less trivial equitable partitions, and

often this will happen on a relatively small subset of vertices Ṽ .

For a strongly regular graph G, some non-trivial relations on Eπ for any partition π and on Dπ
for any equitable partition π are derived from the Euclidean representation of G in Section 4.

3. Lower bound on the number of 4-cliques

We begin with some preliminaries from harmonic analysis.

3.1. Spherical harmonic polynomials. A homogeneous real algebraic polynomial of degree

t on Rn is a real linear combination of monomials xt11 . . . x
tn
n , where t1, . . . , tn are non-negative

integers with sum t. Let ∆ be the Laplace operator in Rn

∆ =
n∑
j=1

∂2

∂x2j
.



6 A. V. BONDARENKO, A. PRYMAK, AND D. RADCHENKO

An algebraic polynomial P on Rn is said to be harmonic if ∆P = 0. For integer t ≥ 1, the

restriction to the unit sphere Sn−1 in Rn of a homogeneous harmonic polynomial of degree t is

called a spherical harmonic of degree t. The vector space of all spherical harmonics of degree t

will be denoted by Pn,t. Various properties of spherical harmonics can be found, for example,

in [DX13, Chapter 1].

We can equip Pn,t with the inner product

〈P,Q〉 =

∫
Sn−1

P (x)Q(x) dµn(x),

where µn is the Lebesgue measure on Sn−1 normalized by µn(Sn−1) = 1. By the Riesz rep-

resentation theorem, for each point x ∈ Sn−1, there exists a unique polynomial Px ∈ Pn,t
satisfying

〈Px, Q〉 = Q(x) for all Q ∈ Pn,t.

This spherical harmonic Px can be conveniently expressed using the Gegenbauer polynomials

C
(α)
t (ξ) with α = (n− 2)/2. The polynomials C

(α)
t (ξ) are orthogonal on [−1, 1] with the weight

(1− ξ2)α−1/2, and can be defined from the generating function

1− z2

(1− 2ξz + z2)α+1
=
∞∑
t=0

t+ α

α
C

(α)
t (ξ)zt,

or in many other ways [DX13, Appendix B.2]. Now, for x, y ∈ Sn−1, we have (see, e.g.,

[DX13, Lemma 1.2.5, Theorem 1.2.6]):

〈Px, Py〉 = Zn,t(x · y), where Zn,t(ξ) =
2t+ n− 2

n− 2
C

((n−2)/2)
t (ξ).

Note that 〈Px, Py〉 depends only on x · y, which also easily follows from the fact that the space

Pn,t is rotation invariant. The spherical harmonic Zn,t(x · y) (with fixed x ∈ Sn−1 as a function

of y ∈ Sn−1) is referred to as a zonal harmonic.

Using the Cauchy-Schwarz inequality in Pn,t, for any finite sets of points {xi}i∈I and {yj}j∈J
from Sn−1, we obtain( ∑

i∈I,j∈J

〈Pxi , Pyj〉

)2

=

〈∑
i∈I

Pxi ,
∑
j∈J

Pyj

〉2

≤

〈∑
i∈I

Pxi ,
∑
i∈I

Pxi

〉〈∑
j∈J

Pyj ,
∑
j∈J

Pyj

〉

=
∑
i,i′∈I

〈Pxi , Pxi′ 〉
∑
j,j′∈J

〈Pyj , Pyj′ 〉.
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Rewriting this in terms of the polynomials Zn,t, we obtain (recall that xi, yj ∈ Sn−1)

(3.1)

( ∑
i∈I,j∈J

Zn,t(xi · yj)

)2

≤

(∑
i,i′∈I

Zn,t(xi · xi′)

)(∑
j,j′∈J

Zn,t(yj · yj′)

)
.

This inequality with t = 4 and proper choice of xi, yj arising from the Euclidean representation

of a strongly regular graph will play a crucial role in the next subsection.

Remark 3.1. The inequality (3.1) is valid whenever the function Zn,t is positive definite in Sn−1

in terminology of [Sch42]. Any finite positive linear combination of Gegenbauer polynomials

C
((n−2)/2)
t (with fixed n and different t) is positive definite in Sn−1. On the other hand, any

positive definite function in Sn−1 is a series of Gegenbauer polynomials with non-negative

coefficients, see [Sch42, Theorem 1].

3.2. Bound. Let G = (V,E) be a strongly regular graph with parameters (v, k, λ, µ). Recall

that for any vertex x ∈ V we let N(x) be the set of all neighbors of x. Also let N ′(x) be the

set of non-neighbors of x, i.e. N ′(x) = V \ ({x}∪N(x)). For any adjacent vertices x and y, we

consider the following vertex partition of V \ {x, y}

π := {N(x) ∩N(y), N ′(x) ∩N(y), N(x) ∩N ′(y), N ′(x) ∩N ′(y)}.

Let Eπ = (ai,j) be the edge matrix of π. Now we will prove a statement expressing all entries

of Eπ using the parameters of our strongly regular graph and the value of a1,1. While the proof

is rather straightforward using strong regularity of G, we include it for completeness.

Proposition 3.2. With the above notations, let a := a1,1. We have

Eπ =

 a λ(λ−1)−2a λ(λ−1)−2a λ(k−2λ)+2a
λ(k−2λ)

2
+a (µ−1)(k−λ−1)−λ(λ−1)+2a (k−µ)(k−λ−1)−λ(k−2λ)−2a

λ(k−2λ)
2

+a (k−µ)(k−λ−1)−λ(k−2λ)−2a
k(v−2k+λ)

2
−(k−µ)(k−λ−1)+λ(k−2λ)

2
+a

 .

Proof. By the definition of G we have |N(x) ∩ N(y)| = λ, hence |N ′(x) ∩ N(y)| = |N(x) ∩

N ′(y)| = k − λ− 1, and |N ′(x) ∩N ′(y)| = v − 2k + λ. For each z ∈ V denote by az, bz, and cz

the number of its neighbors in N(x)∩N(y), in N ′(x)∩N(y), and in N ′(x)∩N ′(y) respectively.

First we compute a1,2, which is the number of edges between N(x)∩N(y) and N ′(x)∩N(y).

For any vertex z ∈ N(x) ∩N(y), z and y have exactly λ common neighbors in G, therefore

az + bz = λ− 1, and hence
∑

z∈N(x)∩N(y)

az +
∑

z∈N(x)∩N(y)

bz = λ(λ− 1).
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So,

a1,2 =
∑

z∈N(x)∩N(y)

bz = λ(λ− 1)− 2a.

Due to symmetry of the arguments, the same computation applies to a1,3 yielding the same

result, so a1,3 = a1,2.

Next we compute a2,2, which is the number of edges in N ′(x) ∩ N(y). For any vertex

z ∈ N ′(x) ∩N(y), z and y have exactly λ common neighbors in V , so

az + bz = λ, and hence
∑

z∈N ′(x)∩N(y)

az +
∑

z∈N ′(x)∩N(y)

bz = λ(k − λ− 1).

Already computed expression for a1,2 means that

(3.2)
∑

z∈N ′(x)∩N(y)

az = λ(λ− 1)− 2a.

Hence,

a2,2 =
1

2

∑
z∈N ′(x)∩N(y)

bz =
λ(k − 2λ)

2
+ a.

Again, we automatically obtain a3,3 = a2,2.

Now we consider a2,3 (the number of edges between N ′(x) ∩ N(y) and N(x) ∩ N ′(y)). As

before, for any vertex z ∈ N ′(x) ∩N(y), z and y have exactly µ common neighbors in V , so

az + bz = µ− 1, and hence
∑

z∈N ′(x)∩N(y)

az +
∑

z∈N ′(x)∩N(y)

bz = (µ− 1)(k − λ− 1).

Using (3.2), we conclude

a2,3 =
∑

z∈N ′(x)∩N(y)

bz = (µ− 1)(k − λ− 1)− λ(λ− 1) + 2a.

Next we count a2,4 (the number of edges between N ′(x)∩N(y) and N ′(x)∩N ′(y)). Counting

all edges coming from N ′(x) ∩N(y), we get immediately

a2,4 = (k − 1)(k − λ− 1)− a2,3 − a2,1

= (k − 1)(k − λ− 1)− (µ− 1)(k − λ− 1) + λ(λ− 1)− 2a− λ(k − 2λ)− 2a− λ(λ− 1) + 2a

= (k − µ)(k − λ− 1)− λ(k − 2λ)− 2a.

Symmetry gives a3,4 = a2,4.
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To compute a1,4 (the number of edges between N(x) ∩ N(y) and N ′(x) ∩ N ′(y)), we count

all edges coming from N(x) ∩N(y). We get

a1,4 = λ(k − 2)− a1,2 − a1,3 = λ(k − 2λ) + 2a.

It remains to evaluate a4,4, which is the number of edges in N ′(x) ∩ N ′(y). We count all

edges coming from N ′(x) ∩N ′(y), and obtain

a4,4 =
1

2
(k(v − 2k + λ)− a1,4 − a2,4 − a3,4)

=
k(v − 2k + λ)

2
− (k − µ)(k − λ− 1) +

λ(k − 2λ)

2
+ a.

Proposition 3.2 is proved. �

Our intention will be to apply (3.1), where we choose xi ∈ Rg to be the Euclidean representa-

tion of i ∈ V (satisfying (2.8)) for all |V | = v vertices of the graph, and yj :=
x
j(1)

+x
j(2)

‖x
j(1)

+x
j(2)
‖ for all

|E| = vk
2

edges j ∈ E, here j joins the vertices j(1), j(2) ∈ V . Note that ‖xj(1) +xj(2)‖ =
√

2 + 2p.

We proceed by computing and introducing notations for certain components of (3.1). Note that

in our settings n of (3.1) is g.

Fixing a vertex i ∈ V , we can have three possibilities: i′ = i, i′ ∈ N(i), or i′ ∈ N ′(i). Then,

clearly,

(3.3)
∑
i,i′∈V

Zg,t(xi · xi′) = v(Zg,t(1) + kZg,t(p) + (v − k − 1)Zg,t(q)) =: ΨA(v, k, λ, µ, t).

Next, we fix a vertex i ∈ V . There are k edges which join i and a vertex in N(i). There are kλ
2

edges joining some two vertices of N(i). Next, some (v − k − 1)µ edges are between N(i) and

N ′(i). Finally, we have (v−k−1)(k−µ)
2

edges in N ′(i). Thus, we obtain

∑
i∈V,j∈E

Zg,t(xi · yj) = vkZg,t

(
1 + p√
2 + 2p

)
+
vkλ

2
Zg,t

(
2p√

2 + 2p

)
+ v(v − k − 1)µZg,t

(
p+ q√
2 + 2p

)

+
v(v − k − 1)(k − µ)

2
Zg,t

(
2q√

2 + 2p

)
=: ΨB(v, k, λ, µ, t).(3.4)

If j ∈ E joins x, y ∈ V , we denote by nj the number of edges in N(x) ∩ N(y). Clearly,∑
j∈E nj = 6N , where N is the number of 4-cliques in G. Fixing j ∈ E, considering various
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cases for j′ ∈ E and using Proposition 3.2, we obtain∑
j,j′∈E

Zg,t(yj · yj′) =
∑
j∈E

(
Zg,t(1) + 2λZg,t

(
1 + 3p

2 + 2p

)
+ 2(k − λ− 1)Zg,t

(
1 + 2p+ q

2 + 2p

)

+njZg,t

(
4p

2 + 2p

)
+ 2(λ(λ− 1)− 2nj)Zg,t

(
3p+ q

2 + 2p

)
+ (λ(k − 2λ) + 2nj)Zg,t

(
2p+ 2q

2 + 2p

)
+(((µ− 1)(k − λ− 1)− λ(λ− 1)) + 2nj)Zg,t

(
2p+ 2q

2 + 2p

)
+2((k − µ)(k − λ− 1)− λ(k − 2λ)− 2nj)Zg,t

(
p+ 3q

2 + 2p

)
+ (λ(k − 2λ) + 2nj)Zg,t

(
2p+ 2q

2 + 2p

)
+

(
k(v − 2k + λ)

2
− (k − µ)(k − λ− 1) +

λ(k − 2λ)

2
+ nj

)
Zg,t

(
4q

2 + 2p

))
= ΨC0(v, k, λ, µ, t) +NΨC1(v, k, λ, µ, t),(3.5)

where

ΨC0(v, k, λ, µ, t) :=
vk

2

(
Zg,t(1) + 2λZg,t

(
1 + 3p

2 + 2p

)
+ 2(k − λ− 1)Zg,t

(
1 + 2p+ q

2 + 2p

)
(3.6)

+2λ(λ− 1)Zg,t

(
3p+ q

2 + 2p

)
+ ((µ− 1)(k − λ− 1)− λ(λ− 1) + 2λ(k − 2λ))Zg,t

(
2p+ 2q

2 + 2p

)
+2((k − µ)(k − λ− 1)− λ(k − 2λ))Zg,t

(
p+ 3q

2 + 2p

)
+

(
k(v − 2k + λ)

2
− (k − µ)(k − λ− 1) +

λ(k − 2λ)

2

)
Zg,t

(
4q

2 + 2p

))
and

(3.7) ΨC1(v, k, λ, µ, t) := 6
4∑
l=0

(−1)l
(

4

l

)
Zg,t

(
(4− l)p+ lq

2 + 2p

)
.

Now we are ready to state and to prove our bound.

Theorem 3.3. Let N be the number of 4-cliques in a (v, k, λ, µ) strongly regular graph. Then

for any positive integer t one has

(ΨB(v, k, λ, µ, t))2 ≤ ΨA(v, k, λ, µ, t) (ΨC0(v, k, λ, µ, t) +NΨC1(v, k, λ, µ, t)) ,

where ΨA, ΨB, ΨC0 and ΨC1 are defined in (3.3), (3.4), (3.6) and (3.7).

Proof. If G = (V,E) is the given graph, let xi ∈ Rg be the Euclidean representation of i ∈

V =: I (satisfying (2.8)), and let yj :=
x
j(1)

+x
j(2)

‖x
j(1)

+x
j(2)
‖ for each edge j ∈ E =: J , where j joins
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the vertices j(1), j(2) ∈ V . The required estimate is exactly (3.1) with the notations introduced

in (3.3), (3.4) and (3.5). �

For our applications, we choose t = 4. The resulting bound on N can be expressed in terms of

a rational function of k, r, s of degree ≤ 10 in each variable (here r and s are the corresponding

eigenvalues, see (2.3) and (2.5)). The expression for this rational function is quite lengthy and is

provided in [BPR], where one can also find a table of non-trivial bounds on N for all admissible

v ≤ 1300.

The following is an immediate corollary of Theorem 3.3 needed for the proof of Theorem 1.1.

Corollary 3.4. Any SRG(76, 30, 8, 14) contains a K4.

Moreover, the bound from the Theorem 3.3 provides N ≥ 2128
55

, so N ≥ 39. In this case,

in (3.3)–(3.7) we have Zg,t(ξ) = Z18,4(ξ) = 54− 2160ξ2 + 7920ξ4).

4. Tools and some computations

Throughout this section, let G be a (v, k, λ, µ) strongly regular graph.

4.1. Relating frequencies of certain edge counts. Our first lemma relates the frequencies

of degrees in an induced subgraph with frequencies of quantities of edges joining a vertex from

outside the subgraph with vertices inside the subgraph.

Lemma 4.1. Let H be a subgraph of G, m = |H|, define

dj := |{x ∈ H : there are exactly j edges from x to vertices in H}|

bj := |{x ∈ G \H : there are exactly j edges from x to vertices in H}|.

Then ∑
j≥0

bj = v −m,(4.1)

∑
j≥0

jbj = mk −
∑
j≥0

jdj, and(4.2)

∑
j≥0

(
j

2

)
bj =

(
m

2

)
µ−

∑
j≥0

(
j

2

)
dj +

1

2
(λ− µ)

∑
j≥0

jdj.(4.3)
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Proof. Counting the number of vertices in G \H, we immediately get (4.1). For (4.2), consider

the total number of edges from G \H to H. Finally, the left-hand-side of (4.3) is the number

of paths of length 2 (say x1, x2, x3 ∈ G) that originate and terminate in H (x1, x3 ∈ H) and go

through G\H (x2 ∈ G\H). The number of paths x1, x2, x3 with x1, x3 ∈ H (and x2 possibly in

H) can be computed (using strong regularity) considering two cases: if x1 and x3 are adjacent,

we obtain λ
2

∑
j≥0 jdj paths, and if x1 and x3 are not adjacent, we have µ

((
m
2

)
− 1

2

∑
j≥0 jdj

)
paths. Subtracting the number of paths of length 2 that completely belong to H, which is∑

j≥0
(
j
2

)
dj, we obtain the desired result. �

We summarize the required applications of Lemma 4.1 in the following corollary, where for

simplicity all unspecified entries of the sequences of frequencies are assumed to be zero.

Corollary 4.2. Suppose (v, k, λ, µ) = (76, 30, 8, 14). With notations of Lemma 4.1, the follow-

ing statements are valid.

(i) If m = 4, (dj)j≥0 = (0, 0, 0, 4, . . . ), and b4 = 0, then (bj)j≥0 = (0, 36, 36, 0, . . . ).

(ii) If m = 6, (dj)j≥0 = (0, 0, 0, 0, 6, . . . ), and b0 = b4 = b5 = b6 = 0, then (bj)j≥0 =

(0, 0, 54, 16, . . . ).

(iii) If m = 7, (dj)j≥0 = (0, 0, 0, 0, 6, 0, 1, . . . ), and b0 = b5 = b6 = b7 = 0, then (bj)j≥0 =

(0, 0, 27, 42, 0, . . . ).

(iv) If m = 7, (dj)j≥0 = (0, 0, 0, 0, 5, 2, . . . ), and b0 = b5 = b6 = b7 = 0, then (bj)j≥0 =

(0, 0, 28, 40, 1, . . . ) or (bj)j≥0 = (0, 1, 25, 43, 0, . . . ).

(v) If m = 8, (dj)j≥0 = (0, 0, 0, 0, 3, 4, 1, . . . ), and b0 = b1 = b5 = b6 = b7 = b8 = 0, then

(bj)j≥0 = (0, 0, 7, 56, 5, . . . ).

(vi) If m = 8, (dj)j≥0 = (0, 0, 0, 0, 2, 6, . . . ), and b0 = b1 = b5 = b6 = b7 = b8 = 0, then

(bj)j≥0 = (0, 0, 8, 54, 6, . . . ).

Proof. While we have only three linear equations and usually more than three non-zero un-

knowns (clearly bj = 0 for j > m), we can utilize the fact that bj are non-negative integers.

(i) We have b0 + b1 + b2 + b3 = 72, b1 + 2b2 + 3b3 = 108, and b2 + 3b3 = 36. Subtracting the

third equation from the second we get b1 + b2 = 72, then the first one gives b0 = b3 = 0, so

consequently b1 = b2 = 36 from the last two equations.

(ii) As b1 + 2b2 + 3b3 = 156 and b2 + 3b3 = 102, we get b1 + b2 = 54, so b1 + b2 + b3 = 70 yields

b3 = 16. Back substitution gives b2 = 54 and b1 = 0.

(iii) Adding the equations b1+b2+b3+b4 = 69, b1+2b2+3b3+4b4 = 180, and b2+3b3+6b4 = 153
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with the coefficients 3, −2, and 1, respectively, we obtain b1 + b4 = 0, so b1 = b4 = 0, and the

resulting system has only one solution b2 = 27, b3 = 42.

(iv) We obtain almost the same system as in (iii), the only difference is that 153 is replaced with

154. Hence, the same linear combination of the equations now provides b1+b4 = 1, yielding two

possibilities: (b1, b4) = (0, 1) or (b1, b4) = (1, 0). Back substitution leads to two linear systems

with unique solutions for b2 and b3 that are stated in the corollary.

(v), (vi) In these cases we have three unknowns and the system is non-degenerate, unique

solutions as stated. �

Remark 4.3. Parts (i)–(iii) of Corollary 4.2 can be immediately obtained from a general re-

sult [Soi10, Theorem 1.2] on block intersection polynomials. The remaining cases (iv)–(vi)

require a different treatment, so we included all the proofs above for completeness.

4.2. Sums of vectors for vertex partitions. Let π = {G1, . . . , Gl} be a partition of a subset

Ṽ ⊂ V of the vertices of the graph G = (V,E) (which, recall, is a (v, k, λ, µ) strongly regular

graph throughout this section). Following Section 2.2, we can use the Euclidean representation

of G in Rg (where g is defined in (2.6)) to obtain vectors Xj :=
∑

i∈Gj xi, j = 1, . . . , l. Denote

by M(π, p, q) the Gram matrix of Xj, i.e., Mi,j := Xi · Xj, i, j = 1, . . . , l, where p and q are

from (2.8). The following lemma is straightforward from (2.7).

Lemma 4.4. If π has edge matrix Eπ = (ai,j)
l
i,j=1, and mj = |Gj|, then the entries of M(π, p, q)

can be computed as follows:

Mi,i = mi + 2ai,ip+ (mi(mi − 1)− 2ai,i)q, Mi,j = ai,jp+ (mimj − ai,j)q.

As M is non-negative definite, its determinant is non-negative. We will use this fact very

frequently, so for convenience we state it in the following lemma.

Lemma 4.5. detM(π, p, q) ≥ 0.

Let us illustrate an immediate consequence for our particular graph. By Kl we denote a

complete graph on l vertices.

Corollary 4.6. Suppose (v, k, λ, µ) = (76, 30, 8, 14). Then G does not contain K5 as a subgraph.

Proof. If G′ are the vertices of K5, then M = M({G′},− 4
15
, 7
45

) = (−1
3
) and detM < 0. �
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This corollary also follows (and, in fact, it is the same proof expressed in a slightly different

language) from the Hoffman bound on the independence number applied to the complement of

G, see, e.g. [BH12, Theorem 3.5.2].

Using Corollary 4.6 and Corollary 4.2 (i), we will obtain a stronger statement during the

proof of Lemma 5.1, which we state here for convenience.

Proposition 4.7. Suppose (v, k, λ, µ) = (76, 30, 8, 14). Then G does not contain either K5 or

K5 − e as a subgraph, where K5 − e denotes a K5 with one edge removed.

If detM(π, p, q) = 0, the system of vectors Xj is linearly dependent, and we can derive even

more information.

Lemma 4.8. Suppose that for some real λj, j = 1, . . . , l, we have
∑

j λjXj = 0. For any vertex

z ∈ G, let ej be the number of neighbors of z in Gj. Then

(4.4)
∑
j:z 6∈Gj

λj(pej + q(|Gj| − ej)) +
∑
j:z∈Gj

λj(1 + pej + q(|Gj| − 1− ej)) = 0.

Proof. Follows directly from xz · (
∑

j λjXj) = 0. �

Remark 4.9. If z ∈ Gj, then pẽj + q(|Gj| − ẽj) = 1 + pej + q(|Gj| − 1 − ej) for ẽj = 1−q
p−q + ej.

Therefore, with

ẽj :=

ej, if z 6∈ Gj,

1−q
p−q + ej, if z ∈ Gj,

we can rewrite (4.4) as ∑
j

λj(pẽj + q(|Gj| − ẽj)) = 0.

Such unified form of (4.4) is somewhat more convenient for implementation in a computer

algebra system and is utilized in our SAGE worksheets [BPR].

Remark 4.10. Lemmas 4.4, 4.5, and 4.8 were stated for Euclidean representation of G in Rg.

The same results are valid for Euclidean representation of G in Rf (obtained by considering the

complement of G), in which case the values of p and q will change (see Remark 2.2 and (2.8)),

which may lead to different (sometimes more useful) conclusions.
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4.3. Projections. Understanding structure of systems of point sets on Euclidean sphere may

be a challenging task. It becomes easier if we are working in a space with small dimension, such

as R2 or R3. A natural way to reduce the problem to such settings is to consider orthogonal

projections.

Recall that following Section 2.2, we are considering the Euclidean representation of a

(v, k, λ, µ) strongly regular graph G in Rg which assigns the unit vectors xi ∈ Rg to each

i ∈ V , satisfying (2.7) and other properties from Section 2.2. For any vertex j ∈ V , we want

to compute the projection x′j of xj onto the linear subspace spanned by {xi, i ∈ G̃} for some

subgraph G̃ ⊂ G. Clearly, x′j is a linear combination of {xi, i ∈ G̃}, and the orthogonality

conditions (x′j − xj) · xt = 0, t ∈ G̃, can be used to form a linear system of equations on the

coefficients of the linear combination. Namely, if

(4.5) x′j =
∑
i∈G̃

αixi,

where, of course, αi also depends on j and G̃, then

(4.6) xj · xt =
∑
i∈G̃

αixi · xt, t ∈ G̃.

All the dot products in this system can be computed by (2.7) if we know the adjacency matrix

of G̃ ∪ {xj}, and then, if the matrix turns out to be non-degenerate, we can compute the

coefficients αi, i ∈ G̃.

In practice, we will use the above computations in a special situation.

Proposition 4.11. Suppose π = {G1, . . . , Gl} is an equitable partition of G̃ with degree matrix

Dπ = (bw,u) (see Section 2.3). Further assume that for every u, 1 ≤ u ≤ l, j is either adjacent

to each vertex of Gu or disjoint with each vertex of Gu. Then in (4.5) we can take αi = αu for

i ∈ Gu, 1 ≤ u ≤ l, and (4.6) becomes

(4.7) q + (p− q)aw = (1− q)αw +
l∑

u=1

αu
(
pbw,u + q(|Gu| − bw,u)

)
, 1 ≤ w ≤ l,

where aw ∈ {0, 1} is the number of edges from j to any vertex of Gw.

Proof. If u 6= w, then for t ∈ Gw there are exactly bw,u neighbors of t in Gu, so∑
i∈Gu

xi · xt = pbw,u + q(|Gu| − bw,u).



16 A. V. BONDARENKO, A. PRYMAK, AND D. RADCHENKO

If u = w, the for t ∈ Gw there are exactly bw,w neighbors of t in Gw, and we have to account

for t itself, so∑
i∈Gw

xi · xt = 1 + pbw,w + q(|Gw| − bw,w − 1) = pbw,w + q(|Gw| − bw,w) + (1− q).

�

Our next goal is to compute the dot product of the projections.

Proposition 4.12. Suppose x′
j(1)

and x′
j(2)

are projections of xj(1) and xj(2) onto the linear span

of {xi, i ∈ G̃}, where G̃ ⊂ G has two corresponding equitable partitions π(1) = {G(1)
1 , . . . , G

(1)
l }

and π(2) = {G(2)
1 , . . . , G

(2)
l } each satisfying the conditions of Proposition 4.11. Suppose further

that both systems (4.7) admit the same solution αu = α
(1)
u = α

(2)
u , 1 ≤ u ≤ l. Then

x′j(1) · x
′
j(2) =

∑
(u,w)

αuαw
(
|Gu,w|+ 2eu,wp+ (|Gu,w|(|Gu,w| − 1)− 2eu,w)q)

)
(4.8)

+
∑

(u,w)6=(ũ,w̃)

αuαw̃
(
eu,w,ũ,w̃p+ (|Gu,w||Gũ,w̃| − eu,w,ũ,w̃)q

)
where Gu,w = G

(1)
u ∩ G(2)

w , eu,w is the number of edges in Gu,w, and eu,w,ũ,w̃ is the number of

edges between Gu,w and Gũ,w̃ for (u,w) 6= (ũ, w̃). The first summation in (4.8) is taken over

all l2 possible values of u and w; and the second summation is over all l4 − l2 values of u, w,

ũ, and w̃, satisfying (u,w) 6= (ũ, w̃).

Proof. From (4.5) we have

x′j(1) =
∑
u,w

αu
∑
i∈Gu,w

xi and x′j(2) =
∑
u,w

αw
∑
i∈Gu,w

xi.

Using (2.7) (as in Lemma 4.4)(
αu

∑
i∈Gu,w

xi

)
·
(
αw

∑
i∈Gu,w

xi

)
= αuαw

(
|Gu,w|+ 2eu,wp+ (|Gu,w|(|Gu,w| − 1)− 2eu,w)q)

)
,

while for (u,w) 6= (ũ, w̃)(
αu

∑
i∈Gu,w

xi

)
·
(
αw̃

∑
i∈Gũ,w̃

xi

)
= αuαw̃

(
eu,w,ũ,w̃p+ (|Gu,w||Gũ,w̃| − eu,w,ũ,w̃)q

)
,

and (4.8) follows. �
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In practical applications of Proposition 4.12, we will often have that the numbers of edges

between different components of G̃ can be computed in terms of only a few unknowns, some

of which will cancel after simplifying the sums in (4.8), so the resulting formula for the dot

product of the projections will be short. Namely, we will obtain that

(4.9) x′j(1) · x
′
j(2) = αnj(1),j(2) + β

for some constants α and β and a certain quantity nj(1),j(2) depending on the vertices j(1) and

j(2). Now we record a simple straightforward computation in the space orthogonal to the linear

span of {xi, i ∈ G̃}.

Proposition 4.13. If under the assumptions of Proposition 4.12, the equation (4.9) holds with

nj(1),j(1) = nj(2),j(2), then for the orthogonal components

x′′j(1) := xj(1) − x′j(1) and x′′j(2) := xj(2) − x′j(2) ,

we have ‖x′′
j(1)
‖ = ‖x′′

j(2)
‖, and the cosine of the angle between x′′

j(1)
and x′′

j(2)
is

(4.10)
x′′
j(1)
· x′′

j(2)

‖x′′
j(1)
‖‖x′′

j(2)
‖

=
xj(1) · xj(2) − (αnj(1),j(2) + β)

1− (αnj(1),j(1) + β)
.

4.4. Rank computation. Throughout this subsection, let G be a (76, 30, 8, 14) strongly reg-

ular graph . Next series of lemmas is devoted to computations of ranks of certain subspaces

generated by linear combinations of vectors from the Euclidean representation. For a subgraph

G̃ ⊂ G we denote by B(G̃) the Gram matrix (xi ·xj)i,j∈G̃. By Proposition 2.1, rank(lin({xi, i ∈

G̃})) = rank(B(G̃)). If A is the adjacency matrix of G̃, then B(G̃) = pA + I + q(J − I − A)

by (2.7).

Lemma 4.14. If G̃ is a 16-coclique, then rank(B(G̃)) = 16. If G̃ is a K6,10, then rank(B(G̃)) =

15.

Proof. We have p = − 4
15

and q = 7
45

, so B(G̃) can be explicitly written. Computing the

dimension of the kernels of these matrices is an easy linear algebra exercise. We obtain that

the matrix for 16-coclique is non-degenerate, and the matrix for K6,10 has one-dimensional

kernel. �

We also need to use certain spectral arguments to compute the rank in other situations. A

key observation is that if e := (1, 1, . . . , 1) is an eigenvector of the adjacency matrix A, then
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any eigenvector v corresponding to a different eigenvalue is orthogonal to e, and hence Jv is

the zero vector.

Lemma 4.15. If G̃ is a (40, 12, 2, 4) strongly regular graph, then rank(B(G̃)) = 16.

Proof. If A is the adjacency matrix of G̃, it has eigenvalue 12 of multiplicity 1 with eigenvector

e, eigenvalue 2 of multiplicity 24, and eigenvalue −4 of multiplicity 15 (by (2.3)–(2.6)). We

notice that e is the eigenvector of B(G̃) = − 4
15
A+ I + 7

45
(J − I − A) with eigenvalue 2:

B(G̃)e =

(
− 4

15
12 + 1 +

7

45
(40− 1− 12)

)
e = 2e.

Any eigenvector v of A corresponding to the eigenvalue 2 will be an eigenvector for B(G̃) with

eigenvalue 0 (here we use the observation that v is orthogonal to e, hence Jv is zero):

B(G̃)v =

(
− 4

15
2 + 1 +

7

45
(0− 1− 2)

)
v = 0v,

and the dimension of this eigenspace is 24. Finally, if v is an eigenvector of A for the eigenvalue

−4, then v is an eigenvector for B(G̃) with eigenvalue 38
15

:

B(G̃)v =

(
− 4

15
(−4) + 1 +

7

45
(0− 1− (−4))

)
v =

38

15
v,

and the multiplicity is 15. The sum of the multiplicities of non-zero eigenvalues is 16. �

By Cl we denote the (undirected) l-cycle. The spectrum of Cl is {2 cos(2πj/l)}lj=1 (see,

e.g. [BH12, Section 1.4.3]). Clearly, the spectrum of a disjoint union of cycles will be the union

of the spectra.

Lemma 4.16. If G̃ is a disjoint union of n cycles with 20 vertices in total, then rank(B(G̃)) =

21− n.

Proof. If A is the adjacency matrix of G̃, then e is the eigenvector of A corresponding to

the eigenvalue 2. The multiplicity of this eigenvalue is n by the preceding discussion on the

structure of the spectrum of G̃. Observe that e is an eigenvector for B(G̃) with eigenvalue 49
15

:

B(G̃)e =

(
− 4

15
2 + 1 +

7

45
(20− 1− 2)

)
e =

49

15
e.

We can choose n− 1 linearly independent eigenvectors of A corresponding to the eigenvalue 2

so that each such vector v is orthogonal to e. Then v is an eigenvector of B(G̃) with eigenvalue
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zero:

B(G̃)v =

(
− 4

15
2 + 1 +

7

45
(0− 1− 2)

)
v = 0v.

It remains to show that any eigenvector v of A corresponding to an eigenvalue λ̃ 6= 2 is an

eigenvector of B(G̃) with a non-zero eigenvalue. This is straightforward:

B(G̃)v =

(
− 4

15
λ̃+ 1 +

7

45
(0− 1− λ̃)

)
v = −19

45
(λ̃− 2)v.

So zero is an eigenvalue of B(G̃) of multiplicity (n − 1), hence rank(B(G̃)) = 20 − (n − 1) =

21− n. �

5. Reduction to SRG(40, 12, 2, 4) or 16-coclique or K6,10 as a subgraph

Theorem 1.1 follows immediately from the following four lemmas. Recall that N(z) and

N ′(z) are the sets of neighbors and non-neighbors of a vertex z, respectively.

Lemma 5.1. If G is a SRG(76, 30, 8, 14), then there is a subgraph G̃ of G satisfying one of

the following statements:

(i) G̃ is a SRG(40, 12, 2, 4), and for any z ∈ G \ G̃ both N(z)∩ G̃ and N ′(z)∩ G̃ are 4-regular

subgraphs on 20 vertices, and |N(z1) ∩N(z2) ∩ G̃| = 8 for any adjacent z1, z2 ∈ G \ G̃; or

(ii) G̃ is a 16-coclique; or

(iii) G̃ is a K6,10.

Recall that n-coclique is a graph with n vertices without edges, and Km,n is the complete

bipartite graph with two components with m and n vertices respectively.

Lemma 5.2. If G is a SRG(76, 30, 8, 14), there cannot be an induced subgraph G̃ ⊂ G which

is a SRG(40, 12, 2, 4), and, in addition, for any z ∈ G \ G̃ both N(z) ∩ G̃ and N ′(z) ∩ G̃ are

4-regular subgraphs on 20 vertices, and |N(z1)∩N(z2)∩ G̃| = 8 for any adjacent z1, z2 ∈ G\ G̃.

Lemma 5.3. 16-coclique cannot be an induced subgraph of SRG(76, 30, 8, 14).

Lemma 5.4. K6,10 cannot be an induced subgraph of SRG(76, 30, 8, 14).

In this section we will prove Lemma 5.1 only.

Proof of Lemma 5.1. Let G be a (76, 30, 8, 14) strongly regular graph, G0 ⊂ G be the ver-

tices of K4 existing due to Corollary 3.4. Apply Lemma 4.1 with H = G0, noting that by
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Corollary 4.6 we have dj = 0 with j ≥ 5. More specifically, by Corollary 4.2 (i), we get

(bj)j≥0 = (0, 36, 36, 0, . . . ).

The above argument can be used to establish Proposition 4.7. Indeed, as the choice of K4 is

arbitrary, since b3 = b4 = 0, we immediately obtain Proposition 4.7 selecting as K4 arbitrary

four vertices of K5 − e [[not containing the missing edge]]. Now we come back to our Lemma.

For j = 1, 2, we define by Gj the subgraph of G \ G0 with vertices connected to exactly j

vertices of G0. Note that G is partitioned into G0, G1, and G2.

Next we claim that {G0, G1, G2} is an equitable partition of G with degree matrix

(5.1) D{G0,G1,G2} =


3 1 2

9 11 18

18 18 10

 .

(In particular, G1 and G2 are regular graphs with regularity 11 and 10 respectively.) The first

row is already established, the rest is an easy consequence of strong regularity with very similar

calculations in each case. For example, we will illustrate how to obtain 10-regularity of G2.

Take a vertex x ∈ G2, let t be the number of neighbors of x in G2. Since G is 30-regular, there

are 28− t neighbors of x in G1 (two in G0). Calculating the number of paths of length 2 that

start at x and end in G0 in two ways, we get

2 · 3 + (28− t) · 1 + t · 2 = 2 · 8 + 2 · 14,

which yields t = 10, as required. Terms in the left hand side correspond to paths with middle

vertex in G0, G1, G2, respectively. Terms in the right hand side correspond to the cases whether

the terminal vertex from G0 is connected to x or not, and use parameters of strong regularity

of G.

Now we consider two cases depending on whether G2 contains a triangle.

Case 1. G2 has no triangles. Then we will show that G̃ := G \ G2 is SRG(40, 12, 2, 4).

For any vertex x ∈ G̃ let Hx ⊂ G2 be the vertices adjacent to x. By (5.1), we always have

|Hx| = 18. As G2 has no triangles, strong regularity of G provides that each edge of G2 belongs

to exactly 8 triangles, where all 8 third vertices belong to G̃. Therefore, the average number of

edges in 18-vertex subgraphs Hx over all x ∈ G̃ is precisely 180·8
40

= 36 (here 180 is the number

of edges in G2 and 40 = |G̃|). Let w be the number of edges in Hx for some fixed x ∈ G̃. If

x 6∈ G0, we will use Lemma 4.5 with π = {G0, Hx, {x}}. In notations of Lemma 4.4, we have
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the cardinalities (m1,m2,m3) = (4, 18, 1) and the edge matrix

Eπ =


6 2 · 18 1

w 18

0

 .

Now by Lemmas 4.4 and 4.5 and straightforward computations (see the supplied SAGE work-

sheet for these and subsequent computations), we obtain detM(π, p, q) = 722
1125

(36− w) ≥ 0, so

w ≤ 36. As x ∈ G̃ was arbitrary, due to the above computation of the average value of w, we

obtain w = 2|Hx| = 36.

For any x ∈ G̃ with π = {G0, Hx, {x}} we have detM(π, p, q) = 0 and using notations of

Lemma 4.8 we can set (λ1, λ2, λ3) = (1, 1/4, 1). If z ∈ G1 is adjacent to x, then e1 = e3 = 1, so

by Lemma 4.8, e2 = 6. If z ∈ G1 is not adjacent to x, then e1 = 1, e3 = 0, and by Lemma 4.8,

e2 = 10. Similar computations can be performed if z ∈ G0 also using Lemma 4.8, leading to

the same conclusion about e2. In summary, for any z ∈ G̃, the number of neighbors of z in

Hx is equal to 6 or 10 when z is or is not adjacent to x, respectively. Therefore, any pair of

adjacent vertices in G̃ has 8 common neighbors in G, 6 of which are in G2, therefore exactly

8 − 6 = 2 are in G̃. Similarly, any pair of non-adjacent vertices in G̃ has exactly 14 − 10 = 4

neighbors in G̃. It readily follows from (5.1) that G̃ is a regular graph of degree 12, so G̃ is

SRG(40, 12, 2, 4).

To complete Case 1, it remains to show that for any z ∈ G2 both N(z) ∩ G̃ and N ′(z) ∩ G̃

are 4-regular subgraphs on 20 vertices, and that |N(z1) ∩ N(z2) ∩ G̃| = 8 for any adjacent

z1, z2 ∈ G2.

Indeed, |N(z)| = 30, and by (5.1) G2 is 10-regular, so |N(z)∩ G̃| = |N ′(z)∩ G̃| = 20. As G2

has no triangles, N(z) ∩ G2 is a 10-coclique, therefore, as N(z) is 8-regular, there are exactly

8 · 10 = 80 edges between N(z) ∩ G2 and N(z) ∩ G̃. Moreover, this implies that there are

exactly 120− 80 = 40 edges in N(z)∩ G̃. Now we claim that N(z)∩ G̃ is regular, which would

imply the 4-regularity as we know the total edge count in this subgraph on 20 vertices to be

40. Let xi ∈ R15 be the Euclidean representation of vertex i ∈ G̃, which is SRG(40, 12, 2, 4),

and then (2.7) holds with p = 1
6

and q = −1
9
. Taking X :=

∑
i∈N(z)∩G̃ xi, we obtain

X ·X = 20 + 80
1

6
− 300

1

9
= 0,
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so X · xi = 0 for any i ∈ N(z) ∩ G̃, implying regularity. Each vertex i ∈ N(z) ∩ G̃ has 4

neighbors in N(z) ∩ G̃, hence 8 neighbors in N ′(z) ∩ G̃. This directly leads to the fact that

N ′(z) ∩ G̃ also has 40 edges, hence, it is 4-regular by the same arguments.

Finally, if z1, z2 ∈ G2 are adjacent, then since G2 has no triangles, all 8 common neighbors

of z1 and z2 are in G̃.

Case 2. G2 has a triangle G3. There will be several subcases depending on how G0 is

connected with G3. For each vertex in G0, we consider the number of its neighbors in G3, and

record the resulting 4-tuple in descending order. We classify the subcases using such 4-tuples.

As G3 ⊂ G2, each vertex of G3 is connected to exactly two vertices of G0, so the sum of the

entries of such 4-tuples is always 6, and each entry does not exceed 3. We consider the cases in

the reverse lexicographical order.

The subcase (3, 3, 0, 0) is impossible due to Corollary 4.6 as the two vertices that have three

neighbors in G3 would form a K5 subgraph together with G3. Similarly, (3, 2, 1, 0) is impossible

due to Proposition 4.7 as we can find a K5 − e as a subgraph.

All of the remaining subcases begin with application of Lemma 4.1 for a certain H either

for H = G0 ∪ G3 or for a closely related graph. We will use the notations of that Lemma, in

particular, (dj)j≥0 is the sequence of frequencies of degrees in the subgraph H and (bj)j≥0 is

the sequence of frequencies of numbers of neighbors from H for the vertices in G \H.

Subcase (3, 1, 1, 1). Take H = G0 ∪ G3. We have (dj)j≥0 = (0, 0, 0, 0, 6, 0, 1, . . . ). Each

vertex in G \H is either in G1 or G2, so it has either one or two neighbors in G0. Therefore,

b0 = 0 and b6 = b7 = 0. Next we claim that b5 = 0. Indeed, otherwise, consider a vertex

x ∈ G \H connected to five vertices from H, two must be from G0 and three from G3. If y is

the vertex of G0 connected to all three vertices from G3, then x, y and G3 form either a K5, or

a K5 − e, so we get a contradiction by Proposition 4.7. Now we can apply Corollary 4.2 (iii),

and get (bj)j≥0 = (0, 0, 27, 42, 0, . . . ).

As above, let y ∈ G0 be the vertex of degree 6 in H, so y is connected with every other vertex

of H, moreover, every other vertex has degree 4 in H. There are 30− 6 = 24 vertices of G \H

connected to y, let G4 be the set of such vertices. We write G4 = G5 ∪ G6, where G5 is the

set of vertices with 2 neighbors in H (1 neighbor in H \ {y}) and G6 is the set of vertices with

3 neighbors in H (2 neighbors in H \ {y}). We have |G5| + |G6| = 24. Since G4 ∪H \ {y} is

8-regular, each vertex of H \ {y} has 5 neighbors in G4. Counting the edges between G4 and

H \ {y}, we obtain |G5|+ 2|G6| = 5 · 6, so |G5| = 18 and |G6| = 6.
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Let w be the number of edges in G6. Take π = {G6, H \ {y}, {y}} and use Lemma 4.5. In

notations of Lemma 4.4, we have the cardinalities (m1,m2,m3) = (6, 6, 1) and the edge matrix

Eπ =


w 12 6

9 6

0

 .

Now by Lemmas 4.4 and 4.5, we obtain detM(π, p, q) = −1444
3375

w ≥ 0, so w = 0. Therefore,

detM(π, p, q) = 0, and computing the kernel of M(π, p, q), we can set (λ1, λ2, λ3) = (1, 4, 8) in

notations of Lemma 4.8. Let G7 be the set of 9 = b2 − |G5| = 27 − 18 vertices from G \ H

having exactly 2 neighbors in H. We apply Lemma 4.8 for any z ∈ G7. Obviously, z is not

adjacent to y and has exactly 2 neighbors in H \ {y}, so e2 = 2 and e3 = 0, then by Lemma 4.8

e1 = 6. This means that any vertex of G7 is adjacent to any vertex of G6. Clearly, y is

adjacent to all vertices of G6 and not adjacent to any of the vertices of G7. To establish that

the subgraph G6 ∪ G7 ∪ {y} is K6,10, it remains to show that there are no edges in G7 ∪ {y}.

Take π = {G7 ∪ {y}, G6}, let w be the number of edges in G7 ∪ {y}, then by Lemmas 4.4

and 4.5, detM(π, p, q) = −1216
135

w ≥ 0, therefore w = 0, which completes the proof for the

subcase (3, 1, 1, 1) exhibiting a K6,10 subgraph.

Subcase (2, 2, 2, 0). Let G8 be the set of the three vertices of G0 with degrees 5 in G0 ∪G3.

We take H = G8 ∪G3. Note that H is 4-regular on 6 vertices. We will show that if G contains

such H as a subgraph, then there is a 16-coclique in G. We have (dj)j≥0 = (0, 0, 0, 0, 6, 0, . . . ).

For any x ∈ G \ H, take π = {H, {x}}, let w be the number of neighbors of x in H. Then

Eπ = ( 12 w
0 ), and by Lemmas 4.4 and 4.5, detM(π, p, q) = − 1

2025
(19w−42)2 + 8

15
≥ 0, providing

1 ≤ w ≤ 3, i.e., b0 = b4 = b5 = · · · = 0. By Corollary 4.2 (ii), (bj)j≥0 = (0, 0, 54, 16, . . . ). Let

G9 be the set of 16 vertices having 3 neighbors in H. Take π = {G9, H}, let w be the number

of edges in G9. Then Eπ = ( w 48
12 ), and by Lemmas 4.4 and 4.5, detM(π, p, q) = −304

675
w ≥ 0, so

w = 0, and G9 is the required subgraph.

Subcase (2, 2, 1, 1). Take H = G0 ∪ G3. We have (dj)j≥0 = (0, 0, 0, 0, 5, 2, . . . ). For any

x ∈ G \H, take π = {H, {x}}, let w be the number of neighbors of x in H. Then Eπ = ( 15 w
0 ),

and by Lemmas 4.4 and 4.5, detM(π, p, q) = − 1
2025

(19w − 42)2 + 13
15
≥ 0, so 1 ≤ w ≤ 4,

i.e., b0 = b5 = b6 = · · · = 0. By Corollary 4.2 (iv), either (bj)j≥0 = (0, 0, 28, 40, 1, . . . ) or

(bj)j≥0 = (0, 1, 25, 43, 0, . . . ).



24 A. V. BONDARENKO, A. PRYMAK, AND D. RADCHENKO

If (bj)j≥0 = (0, 0, 28, 40, 1, . . . ), let y ∈ G \H be the vertex with exactly four neighbors in H.

There are two possibilities: either y ∈ G1 or y ∈ G2.

Suppose y ∈ G1. For any x ∈ G2 \G3, there are exactly two neighbors in G0, and as b5 = 0

and b4 = 1 while y 6= x, there is at most one neighbor of x in G3. Let G10 be the set of such

x ∈ G2 \ G3 having no neighbors in G3, and G11 be the set of x ∈ G2 \ G3 with exactly one

neighbor in G3. Recall that G2 is 10-regular and G3 ⊂ G2. Therefore, each vertex of G3 has

exactly 8 neighbors in G11, and |G11| = 24. Hence, |G10| = |G2|−|G3|−|G11| = 36−3−24 = 9.

Further, by (5.1), y has 18 neighbors in G2, so at least 18− |G3| − |G10| = 6 of them belong to

G11. Let G12 be any 6 vertices from G11 connected to y. We claim that G12∪G10∪{y} is K6,10.

Take π = {G12, G3, G0, {y}}, let w be the number of edges in G12. In notations of Lemma 4.4,

we have the cardinalities (m1,m2,m3,m4) = (6, 3, 4, 1), and the edge matrix

Eπ =


w 6 12 6

3 6 3

6 1

0

 .

Now by Lemmas 4.4 and 4.5, we obtain detM(π, p, q) = −13718
50625

w ≥ 0, so w = 0. There-

fore, detM(π, p, q) = 0, and computing the kernel of M(π, p, q), we can set (λ1, λ2, λ3, λ4) =

(1, 4, 4, 4) in notations of Lemma 4.8, and apply that lemma for any z ∈ G10 with (e2, e3, e4) =

(0, 2, 0). We obtain e1 = 6, that is the number of neighbors of z in G12 is exactly 6. So, G12

has no edges, and each vertex of G10 ∪ {y} is connected to all six vertices of G12. Using the

same argument as in the end of the subcase (3, 1, 1, 1), we obtain that there are no edges in

G10 ∪ {y}, so G12 ∪G10 ∪ {y} is the required K6,10 subgraph.

Now suppose that y ∈ G2. Then the set G13 of neighbors of y in G0 consists of exactly two

vertices. Recalling that we are considering the subcase (2, 2, 1, 1), there are three situations

depending on the number of neighbors of G13 in G3. Analogously to the notation for subcases,

we denote these situations as (2, 2), (2, 1), and (1, 1).

In the situation (2, 2), we note that each of the three vertices of G13 ∪ {y} has exactly two

neighbors in G3 (recall that y has exactly 4 neighbors in G0 ∪ G3, two of which are in G0),

so repeating the proof of subcase (2, 2, 2, 0) with H = G13 ∪ {y} ∪ G0, we can establish the

existence of a 16-coclique in G.
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In the situation (2, 1), (we temporarily use H, (bj), (dj) to denote different values from

what they were assigned at the beginning of the current subcase) take H = G0 ∪ G3 ∪ {y}.

Then (dj)j≥0 = (0, 0, 0, 0, 3, 4, 1, . . . ). For any x ∈ G \ H, take π = {H, {x}}, let w be the

number of neighbors of x in H. Then Eπ = ( 19 w
0 ), and by Lemma 4.4 and Lemma 4.5,

detM(π, p, q) = − 1
2025

(19w − 56)2 + 2
3
≥ 0, so 2 ≤ w ≤ 4, i.e., b0 = b1 = b5 = b6 = · · · = 0. By

Corollary 4.2 (v), we get (bj)j≥0 = (0, 0, 7, 56, 5, . . . ). Let G14 be the set of 5 vertices of G \H

each connected to exactly 4 vertices of H. Take π = {G14, H}, then Eπ = ( w 20
19 ), where w is

the number of edges in G14. By Lemma 4.4 and Lemma 4.5, detM(π, p, q) = − 76
135
w + 38

81
≥ 0,

so w = 0. Let y1 be the vertex of G13 with exactly two neighbors in G3, we have 6 neighbors of

y1 in H \ {y1}. Take π = {{y1}, G14, H \ {y1}}, let w be the number of edges between y1 and

G14, then

Eπ =


0 w 6

0 20− w

13

 ,

and by Lemma 4.4 and Lemma 4.5, detM(π, p, q) = − 722
6075

w2 − 1444
3645

w ≥ 0, so w = 0. We

have that {y1} ∪ G14 is a 6-coclique, next we wish to find 10 vertices each connected to all

vertices of {y1} ∪ G14. Recalling that b3 = 7, we denote by G15 the 7 vertices of G \ H

each having exactly 3 neighbors in H. Returning to our partition π, with w = 0 we have

detM(π, p, q) = 0, and computing the kernel of M(π, p, q), we can set (λ1, λ2, λ3) = (5, 1, 4) in

notations of Lemma 4.8, and apply that lemma for any z ∈ G15 with either (e1, e3) = (0, 2) or

(e1, e3) = (1, 1). We find that in the first case e2 = 6, which is impossible, so must be in the

second case, then e2 = 5. Therefore, any z ∈ G15 is connected to all vertices of {y1} ∪ G14.

It remains to find 3 more vertices to form the desired 10. The graph H has 3 vertices of

degree four, denote them by G16. We refine the partition π splitting H \ {y1} by redefining

π = {{y1}, G14, G16, H \ ({y1} ∪G16)} and apply Lemma 4.8 (with (λ1, λ2, λ3, λ4) = (5, 1, 4, 4))

for any z ∈ G16 with either (e1, e4) = (0, 4) or (e1, e4) = (1, 3). We again obtain the impossible

e2 = 6 in the first case, so we must have e1 = 1 and e2 = 5, which shows that z is connected

to all {y1} ∪G14. Using the same argument as in the end of the subcase (3, 1, 1, 1), we obtain

that there are no edges in the subgraph G15 ∪ G16, so {y1} ∪ G14 ∪ G15 ∪ G16 is the required

K6,10 subgraph.

In the situation (1, 1), we also take H = G0∪G3∪{y}, but now (dj)j≥0 = (0, 0, 0, 0, 2, 6, . . . ).

As total number of edges in H is the same as in the situation (2, 1) (namely, 19), we argue
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similarly to obtain that b0 = b1 = b5 = b6 = · · · = 0. By Corollary 4.2 (vi), we get (bj)j≥0 =

(0, 0, 8, 54, 6, . . . ). Let G17 be the 6 vertices of G\H each having exactly 4 neighbors in H, and

let G18 be the 8 vertices of G \H each having exactly 2 neighbors in H. Take π = {G17, H},

then Eπ = ( w 24
19 ), where w is the number of edges in G17. By Lemma 4.4 and Lemma 4.5,

detM(π, p, q) = − 76
135
w ≥ 0, so w = 0. Then we have detM(π, p, q) = 0, and computing the

kernel of M(π, p, q), we can set (λ1, λ2) = (1, 4) in notations of Lemma 4.8, and apply that

lemma for any z ∈ G18 with e2 = 2 to obtain e1 = 6. So, every vertex of G18 is connected to

all vertices of G17, which is a 6-coclique. We need two more such vertices, let G19 be the two

vertices of H having degree 4 in H (one is y, and another one is in G3 not connected to y).

Take π = {G17, H \G19, G19} and (λ1, λ2, λ3) = (1, 4, 4), apply Lemma 4.8 for any z ∈ G19 with

e2 = 4 to get e1 = 6. Therefore, any vertex of G18 ∪ G19 is connected to all vertices of G17,

hence, as in the end of proof of the subcase (3, 1, 1, 1), the subgraph G18 ∪G19 is a 10-coclique.

In the summary, G17 ∪G18 ∪G19 is the required K6,10 subgraph.

This completes the treatment of the (subsub-) case (bj)j≥0 = (0, 0, 28, 40, 1, . . . ) in the subcase

(2, 2, 1, 1), where, we recall that H (and, consequently, the corresponding (bj) and (dj)) was

set as H = G0 ∪G3. So now we assume that (bj)j≥0 = (0, 1, 25, 43, 0, . . . ) with this H. Define

y ∈ G \ H as the vertex with exactly one neighbor in H. Recall that G3 ⊂ G2 and G2 is

10-regular. Hence, let G20 be the set of 24 vertices of G2 \G3 that have exactly one edge to G3

(each of the three vertices of G3 is connected to some 8 vertices of G2 \ G3), note that there

is no vertex of G2 \ G3 connected to more than one vertex of G3 due to b4 = b5 = 0. Clearly

y ∈ G1, and by (5.1), there are 18 edges from y to G2, and in particular, at least 6 vertices of

G20 are not connected to y. Let G21 be any such 6 vertices. Take π = {G21, G3, G0, {y}}, let w

be the number of edges in G21, then

Eπ =


w 6 12 0

3 6 0

6 1

0

 ,

and by Lemma 4.4 and Lemma 4.5, we obtain detM(π, p, q) = −13718
50625

w ≥ 0, so w = 0. There-

fore, detM(π, p, q) = 0, and computing the kernel of M(π, p, q), we can set (λ1, λ2, λ3, λ4) =

(1, 4, 6,−4) in notations of Lemma 4.8. Note that among 43 vertices with exactly 3 neighbors in

H, there are 24 (G20) from G2, and hence 19 from G1. But as G1 is 11-regular, there are at least
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19−11 = 8 vertices from these 19 not connected to y. Denote any set of such 8 vertices as G22.

Now we apply Lemma 4.8 for any z ∈ G22 with (e2, e3, e4) = (2, 1, 0) and get e1 = 0, so there

are no edges from G22 to G21. Let G23 be the subgraph consisting of one vertex that has degree

5 in H and is not connected to y. Refining π as π = {G21, G3, G0 \ G23, G23, {y}} and taking

(λ1, λ2, λ3, λ4, λ5) = (1, 4, 6, 6,−4) we apply Lemma 4.8 for z ∈ G23 with (e2, e3, e5) = (2, 3, 0)

to get e1 = 0, so, G23 is not connected to G21. Next we take π = {G22, G3, G0, {y}}, denote by

w the number of edges in G22, observe that

Eπ =


w 16 8 0

3 6 0

6 1

0

 ,

and by Lemma 4.4 and Lemma 4.5, we obtain detM(π, p, q) = −13718
50625

w+ 109744
455625

≥ 0, so w = 0.

To show that {y} ∪G21 ∪G22 ∪G23 is a 16-coclique, it only remains to verify that there are no

edges between G22 and G23. This is quite straightforward using already established structure.

Indeed, take π = {G23, G22, G3, G0 \ G23, {y}}, set w to be the number of edges between G23

and G22, then

Eπ =



0 w 2 3 0

0 16 8− w 0

3 4 0

3 1

0


,

and by Lemma 4.4 and Lemma 4.5, we obtain detM(π, p, q) = − 130321
2278125

w2 − 4170272
20503125

w ≥ 0, so

w = 0. This completes the proof of the subcase (2, 2, 1, 1), and thus, of the lemma. �

6. The case of SRG(40, 12, 2, 4)

Proof of Lemma 5.2. Suppose G is a SRG(76, 30, 8, 14), G̃ ⊂ G is a SRG(40, 12, 2, 4), for any

z ∈ G \ G̃ both N(z) ∩ G̃ and N ′(z) ∩ G̃ are 4-regular subgraphs on 20 vertices, and that

|N(z1) ∩ N(z2) ∩ G̃| = 8 for any adjacent z1, z2 ∈ G \ G̃. By Lemma 4.15, rankB(G̃) =

rank(lin({xi, i ∈ G̃})) = 16, where xi ∈ R18 is the Euclidean representation of i ∈ G. For

j ∈ G \ G̃, denote by x′j the projection of xj onto lin{xi, i ∈ G̃}. For j(1), j(2) ∈ G \ G̃, our

goal is to find the dot products x′′
j(1)
· x′′

j(2)
, where x′′j = xj − x′j is the projection of xj onto the

orthogonal complement of lin{xi, i ∈ G̃}, which is a 18− 16 = 2-dimensional Euclidean space.
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Fix j ∈ G \ G̃. Apply Proposition 4.11 to the equitable partition π = {N(j)∩ G̃, N ′(j)∩ G̃},

where by assumption |N(j) ∩ G̃| = |N ′(j) ∩ G̃| = 20 and the degree matrix is Dπ = ( 4 8
8 4 ).

Solving the system (4.7) with (a1, a2) = (1, 0), we get (α1, α2) = (−1
9
, 1
18

), which means

x′j = −1

9

∑
i∈N(j)∩G̃

xi +
1

18

∑
i∈N ′(j)∩G̃

xi.

Now take j(1), j(2) ∈ G \ G̃, denote the corresponding partitions by π(1) and π(2), and apply

Proposition 4.12. To simplify the right-hand side of (4.8), we first note that by strong regularity

of G̃ and our assumption all values |Gu,w|, eu,w and eu,w,ũ,w̃ can be computed in terms of

nj(1),j(2) := |G1,1| = |G(1)
1 , G

(2)
1 | = |N(j(1))∩N(j(2))∩G̃| and ej(1),j(2) := e1,1, the number of edges

in G1,1. Indeed, it straightforward that |G1,1| = |G2,2| = nj(1),j(2) , |G1,2| = |G2,1| = 20−nj(1),j(2) ,

e1,1 = ej(1),j(2) , e1,2 = e2,1 = 40− ej(1),j(2) , e2,2 = 8nj(1),j(2) − ej(1),j(2) , e1,1,1,2 = e1,1,2,1 = e1,2,1,1 =

e2,1,1,1 = 4nj(1),j(2) − 2ej(1),j(2) , e1,1,2,2 = e2,2,1,1 = 4nj(1),j(2) + 2ej(1),j(2) , e1,2,2,2 = e2,1,2,2 = e2,2,1,2 =

e2,2,2,1 = −4nj(1),j(2) + 2ej(1),j(2) , and finally e1,2,2,1 = e2,1,1,2 = 160− 12nj(1),j(2) + 2ej(1),j(2) . Non-

negativity of the above values implies that ej(1),j(2) = 2nj(1),j(2) , but even without use of this

relation, simplifying the right hand side of (4.12) we obtain

x′j(1) · x
′
j(2) =

19

270
nj(1),j(2) −

52

81
.

Our construction yields nj(1),j(2) = 20 if j(1) = j(2), so with the above notations we can apply

Proposition 4.13 to see that all projections x′′j , j ∈ G \ G̃, have the same Euclidean norm,

which means they belong to a (2-dimensional, planar) circle. For convenience, we define the

normalized projections x′′′j :=
x′′j
‖x′′j ‖

.

Next, using (4.10), if j(1) and j(2) are adjacent, then (by assumption) nj(1),j(2) = 8, so x′′′
j(1)
·

x′′′
j(2)

= −4
5
. If j(1) and j(2) are disjoint, then x′′′

j(1)
· x′′′

j(2)
= − 3

10
nj(1),j(2) + 17

5
. Fix j ∈ G \ G̃.

Take any j(1), j(2) ∈ G \ G̃ such that x′′′j · x′′′j(1) = −4
5

and x′′′j · x′′′j(2) = −4
5

(for example, j can be

adjacent to both j(1) and j(2)). We can assume that x′′′j is (1, 0) in R2, then each of x′′′
j(1)

and

x′′′
j(2)

can be either (−4
5
, 3
5
) or (−4

5
,−3

5
). We claim that both possibilities cannot be attained.

Indeed, otherwise x′′′
j(1)
·x′′′

j(2)
= 7

25
leading to nj(1),j(2) = 52

5
, which is not integer. So, all i ∈ G\G̃

such that x′′′i · x′′′j = −4
5

(in particular, neighbors i of j) have the same projection x′′′i , which is

either (−4
5
, 3
5
) or (−4

5
,−3

5
). Now, if i ∈ G \ G̃ is disjoint with j, but they both have a common

neighbor in G \ G̃, we use the above argument for that neighbor to get that x′′′i = x′′′j . But if

i ∈ G \ G̃ is disjoint with j and has no common neighbors in G \ G̃, then all common neighbors
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are in G̃, hence ni,j = 14, and so x′′′i · x′′′j = −4
5
. In summary, {x′′′i , i ∈ G \ G̃} attains only two

values: (1, 0) and one of (−4
5
,±3

5
).

But then clearly ∑
i∈G\G̃

x′′′i 6= (0, 0).

On the other hand,
∑

i∈G xi = 0 and x′′i = (0, 0) for i ∈ G̃, so∑
i∈G\G̃

x′′i = (0, 0),

which is a contradiction that completes the proof of the lemma. �

7. The case of 16-coclique

Proof of Lemma 5.3. Suppose G̃ is a 16-coclique in G, which is SRG(76, 30, 8, 14). Similarly

to the proof of Lemma 5.2, we apply Lemma 4.14 to see that rankB(G̃) = rank(lin({xi, i ∈

G̃})) = 16, where xi ∈ R18 is the Euclidean representation of i ∈ G. For j ∈ G \ G̃, denote

by x′j the projection of xj onto lin{xi, i ∈ G̃}. For j(1), j(2) ∈ G \ G̃, we will compute the dot

products x′′
j(1)
·x′′

j(2)
, where x′′j = xj−x′j is the projection of xj onto the orthogonal complement

of lin{xi, i ∈ G̃}, which is a 18− 16 = 2-dimensional Euclidean space.

Next we claim that for any j ∈ G \ G̃, we have |N(j) ∩ G̃| = |N ′(j) ∩ G̃| = 8. It is

convenient to use the dual Euclidean representation of G, namely for any i ∈ G there exists

zi ∈ R57 satisfying (2.8) with (p, q) = ( 1
15
,− 1

15
). Then

(∑
i∈G̃ zi

)2
= 16 + 16 · 15 · −1

15
= 0, hence

0 = zj ·
(∑

i∈G̃ zi
)

= 1
15

(|N(j) ∩ G̃| − |N ′(j) ∩ G̃|), and the claim follows.

For a fixed j ∈ G \ G̃ we apply Proposition 4.11 to the equitable partition π = {N(j) ∩

G̃, N ′(j)∩G̃}, where |N(j)∩G̃| = |N ′(j)∩G̃| = 8 and the degree matrix is trivially Dπ = ( 0 0
0 0 ).

Solving the system (4.7) with (a1, a2) = (1, 0), we get (α1, α2) = (− 4
15
, 7
30

). Now take j(1), j(2) ∈

G \ G̃, denote the corresponding partitions by π(1) and π(2), and apply Proposition 4.12. We

clearly have that all eu,w and eu,w,ũ,w̃ are zeroes, and with nj(1),j(2) := |G1,1| we immediately

obtain |G1,1| = |G2,2| = nj(1),j(2) , |G1,2| = |G2,1| = 8− nj(1),j(2) . Now by (4.8),

(x′j(1) , x
′
j(2)) =

19

90
nj(1),j(2) −

112

135
.

If j(1) = j(2), then nj(1),j(2) = 8, so with the above notations we can apply Proposition 4.13 to

see that all projections x′′j , j ∈ G\ G̃, have the same Euclidean norm, which means they belong
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to a (2-dimensional, planar) circle. For convenience, we define the normalized projections

x′′′j :=
x′′j
‖x′′j ‖

.

Using (4.10), if a ∈ {0, 1} is the number of edges (adjacency) between j(1) and j(2), then

x′′′
j(1)
· x′′′

j(2)
= −3

2
nj(1),j(2) + 7 − a ∈ [−1, 1], which, as nj(1),j(2) is integer, leads to one of the

following four possibilities:

(7.1) x′′′j(1) · x
′′′
j(2) =



1, if nj(1),j(2) = 2 and a = 1,

−1
2
, if nj(1),j(2) = 3 and a = 1,

1, if nj(1),j(2) = 4 and a = 0,

−1
2
, if nj(1),j(2) = 5 and a = 0.

In particular, x′′′
j(1)
· x′′′

j(2)
∈ {1,−1

2
}, so that there are only three possible values for x′′′j , j ∈

G \ G̃, which are the vertices of an equilateral triangle inscribed into the unit circle. Now let

{H1, H2, H3} be the partition of G \ G̃ such that the value of x′′′j is the same for any j in one

component of the partition. Without loss of generality, x′′′j = (cos(tπ/3), sin(tπ/3)), j ∈ Ht,

t = 1, 2, 3. Arguing as in the end of the proof of Lemma 5.2, we have
∑

j∈G\G̃ x
′′′
j = (0, 0),

which implies |H1| = |H2| = |H3| = 20.

It is sufficient to work with H1, but the same statements are valid for the other two compo-

nents of the partition.

First we show that H1 is 2-regular. For any i ∈ G̃, we have N(i) ⊂ G\G̃ and |N(i)| = 30. We

claim that |N(i)∩H1| = 10. By applying projections to (2.10), we have that
∑

j∈N(i) x
′′′
j = (0, 0),

therefore there will be equal number of elements of N(i) in each part H1, H2, and H3, in

particular, |N(i) ∩ H1| = 10. Next let w be the number of edges in H1, then computing

the number of paths of length 2 originating and terminating in H1 going through G̃, we have

16 · 10·9
2

= w · 2 + (190 − w) · 4, so w = 20. Using the Euclidean representation of G in R57,

(
∑

i∈H1
zi)

2 = 20 + 40 · 1
15

+ 340 · −1
15

= 0, hence for any j ∈ H1 we have zj · (
∑

i∈H1
zi) =

1 + 1
15
|N(j) ∩H1| + −1

15
(19 − |N(j) ∩H1|), implying that |N(j) ∩H1| = 2, so H1 is 2-regular.

Any 2-regular graph is a union of cycles.

Next we show that if Cl is a cycle of length l in H1, then for any i ∈ G̃, we have |N(i)∩Cl| =

l/2, in particular l is even and is not less than 4 (there is no cycle of length 2). We know

that |N(i) ∩ H1| = 10, so if H1 consists only of one cycle, we are done. Otherwise, it is

enough to show for any two cycles Cl1 and Cl2 in H1 of lengths l1 and l2 respectively, we have
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l1/l2 = |N(i) ∩ Cl1|/|N(i) ∩ Cl2|, i.e., the lengths are proportional to the number of neighbors

(the sum of the lengths is 20 and the total number of neighbors is 10). Let at = |N(i) ∩ Clt|,

t = 1, 2. We use the Euclidean representation of G in R18, recall that then (p, q) = (− 4
15
, 7
45

),

hence, 1 + 2p− 3q = 0. Therefore,l2 ∑
j∈Cl1

xj − l1
∑
j∈Cl2

xj

2

= l22(l1 + 2l1p+ (l21 − 3l1)q)− 2l21l
2
2q + l21(l2 + 2l2p+ (l22 − 3l2)q) = 0,

and

0 = xi ·

l2 ∑
j∈Cl1

xj − l1
∑
j∈Cl2

xj

 = l2(a1p+ (l1 − a1)q)− l1(a2p+ (l2 − a1)q) = (l2a1 − l1a2)p,

yielding the desired l1/l2 = a1/a2.

We are now in position to use Lemma 4.16. As all projections x′′j , j ∈ H1, are the same, and

they are projections onto a 2-dimensional subspace of R18, we have rank(lin({xj, j ∈ H1})) ≤

17, so by Lemma 4.16, there are at least 4 cycles in H1. Therefore, there are only the following

three possibilities for the lengths of the cycles: 5 cycles of length 4, or two cycles of length 6

and two cycles of length 4, or one cycle of length 8 and three cycles of length 4. In either of

the cases, there is a cycle C4 ⊂ H1 of length 4, which will suffice for us to complete the proof.

Suppose that G̃ = {g1, . . . , g16}. For i ∈ H1, define A(i) as the 8-element subset of

{1, 2, . . . , 16} such that N(i) ∩ G̃ = {gt : t ∈ A(i)}. By (7.1), if i, j ∈ H1 are adjacent,

then |A(i) ∩ A(j)| = 2; and if i, j ∈ H1 are disjoint, then |A(i) ∩ A(j)| = 4. It is not hard to

see that without loss of generality (by permutation of indexes) we can assume that our C4 has

the following representation:

{A(i) : i ∈ C4} = {{1, 2, 3, 4, 5, 6, 7, 8}, {1, 2, 9, 10, 11, 12, 13, 14},

{5, 6, 7, 8, 13, 14, 15, 16}, {3, 4, 9, 10, 11, 12, 15, 16}}.

Now let M be the collection of all 8-element subsets of {1, 2, . . . , 16}, then |M| =
(
16
8

)
= 12870.

Consider the following graph on M: two vertices A1, A2 ∈M are adjacent if and only if |A1∩A2|

is either 2 or 4. We fix M0 := {A(i) : i ∈ C4}, |M0| = 4, and define M1 := {A ∈ M : M0 ⊂

N(A)}, where N(A) denotes all neighbors in our graph on M. Clearly, {A(i) : i ∈ H1 \ C4} is

a 16-clique in M1. We obtain a contradiction by showing that the largest clique in M1 has size

15.
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To this end, we use the mathematical software Sage, in particular, the function clique number

returning the order of the largest clique of the given graph, which is based on the Bron-Kerbosch

algorithm [BK73]. Note that M1 can be easily generated, it has 906 vertices and 176672 edges.

The procedure’s running time is well under one hour on a modern personal computer. See [BPR]

for the source code and the output. �

Remark 7.1. One can use the second cycle of length four to reduce the problem to graphs

of smaller size that would not require the use of the more sophisticated algorithms for the

computation of the largest clique. However, this would lead to a more complicated programming

and longer running time.

8. The case of K6,10

Proof of Lemma 5.4. Let G̃ is a K6,10 and a subgraph of G, which is SRG(76, 30, 8, 14). Let

G̃1 be the 6-coclique in G̃, and G̃2 be the 10-coclique in G̃, so that G̃ = G̃1 ∪ G̃2. As before,

we apply Lemma 4.14 to see that rankB(G̃) = rank(lin({xi, i ∈ G̃})) = 15, where xi ∈ R18

is the Euclidean representation of i ∈ G. For j ∈ G \ G̃, denote by x′j the projection of xj

onto lin{xi, i ∈ G̃}. For j(1), j(2) ∈ G \ G̃, we will compute the dot products x′′
j(1)
· x′′

j(2)
, where

x′′j = xj − x′j is the projection of xj onto the orthogonal complement of lin{xi, i ∈ G̃}, which is

a 18− 15 = 3-dimensional Euclidean space.

Next we show that for any j ∈ G \ G̃, we have |N(j) ∩ G̃1| = 2 and |N(j) ∩ G̃2| = 4.

The partition π = {G̃1, G̃2 of G̃ has edge matrix Eπ = ( 0 60
60 0 ). Then, with (p, q) = (− 4

15
, 7
45

),

in the notations of Lemma 4.4, detM(π, p, q) = 0. Therefore, we can compute the kernel of

M(π, p, q), set (λ1, λ2) = (1, 2/3) and z = j in notations of Lemma 4.8. By (4.4) of that lemma,

57|N(j)∩ G̃1|+38|N(j)∩ G̃1| = 266. We apply the same procedure for the dual representation,

with (p, q) = ( 1
15
,− 1

15
), and obtain another linear equation −|N(j) ∩ G̃1| + |N(j) ∩ G̃2| = 2.

The two equations immediately lead to the claimed |N(j)∩ G̃1| = 2 and |N(j)∩ G̃2| = 4. Note

that during the proof we established that
∑

i∈G̃1
xi + 2

3

∑
i∈G̃2

xi = 0.

Now, with fixed j ∈ G \ G̃, we will apply Proposition 4.11 to the equitable partition π =

{N(j) ∩ G̃1, N
′(j) ∩ G̃1, N(j) ∩ G̃2, N

′(j) ∩ G̃2}, where the degree matrix is

Dπ =

(
0 0 4 6
0 0 4 6
2 4 0 0
2 4 0 0

)
.

Due to linear dependence
∑

i∈G̃1
xi + 2

3

∑
i∈G̃2

xi = 0, we can expect a one-parametric fam-

ily of the solutions of the system (4.7) with (a1, a2, a3, a4) = (1, 0, 1, 0). Indeed, we get
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(α1, α2, α3, α4) = (3
2
r− 5

8
, 3
2
r− 1

8
, r− 1

2
, r), r ∈ R, and it is convenient to assume that α1 = α3,

which is achieved by taking r = 1
4
, then (α1, α2, α3, α4) = (−1

4
, 1
4
,−1

4
, 1
4
), so we also have that

α2 = α4. We established that

(8.1) x′j = −1

4

∑
i∈N(j)∩G̃

xi +
1

4

∑
i∈N ′(j)∩G̃

xi.

Now take j(1), j(2) ∈ G \ G̃, define the partitions π(1) = {N(j(1)) ∩ G̃, N ′(j(1)) ∩ G̃} and

π(2) = {N(j(2))∩ G̃, N ′(j(2))∩ G̃}, and apply Proposition 4.12. To simplify the right-hand side

of (4.8), we use two variables: n1 = |N(j(1)) ∩N(j(2)) ∩ G̃1| and n2 = |N(j(1)) ∩N(j(2)) ∩ G̃2|.

The structure of G̃ then implies nj(1),j(2) := |G1,1| = n1 + n2, G1,2 = G2,1 = 6 − n1 − n2,

4 + n1 + n2, e1,1 = n1n2, e1,2 = e2,1 = (2 − n1)(4 − n2), e2,2 = (2 + n1)(2 + n2), e1,1,1,2 =

e1,1,2,1 = e1,2,1,1 = e2,1,1,1 = n1(4− n2) + n2(2− n1), e1,1,2,2 = e2,2,1,1 = n1(2 + n2) + n2(2 + n1),

e1,2,2,2 = e2,1,2,2 = e2,2,1,2 = e2,2,2,1 = (2 − n1)(2 + n2) + (4 − n2)(2 + n1), and finally e1,2,2,1 =

e2,1,1,2 = 2(2− n1)(4− n2). Simplifying the right hand side of (4.12), we obtain

x′j(1) · x
′
j(2) =

19

90
nj(1),j(2) −

43

90
.

We have nj(1),j(2) = 6 if j(1) = j(2), so with the above notations we can apply Proposition 4.13 to

see that all projections x′′j , j ∈ G\ G̃, have the same Euclidean norm, which means they belong

to an Euclidean sphere in three dimensions. More specifically, by (8.1) we have (xj, x
′
j) =

−1
4
· 6p+ 1

4
· 10q = 71

90
, therefore ‖x′′j‖2 = ‖xj −x′j‖2 = 1− 271

90
+ 19

90
6− 43

90
= 19

90
. For convenience,

we define the normalized projections x′′′j :=
x′′j
‖x′′j ‖

.

Next, using (4.10), if j(1) and j(2) are disjoint, then x′′′
j(1)
· x′′′

j(2)
= −nj(1),j(2) + 3. If j(1) and

j(2) are adjacent, then x′′′
j(1)
· x′′′

j(2)
= −nj(1),j(2) + 1. Since nj(1),j(2) is an integer, this implies that

x′′′
j(1)
· x′′′

j(2)
can only take one of the three values from {−1, 0, 1}.

Therefore, it is easy to see that the possible values of x′′′j , j ∈ G\G̃, are vertices of an octahe-

dron in R3, so without loss of generality we can assume that x′′′j ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1)},

j ∈ G \ G̃. Let H1 = {i ∈ G \ G̃ : x′′′i = (1, 0, 0)} and H2 = {i ∈ G \ G̃ : x′′′i = (−1, 0, 0)}.

Arguing as in the end of the proof of Lemma 5.2, we have
∑

j∈G\G̃ x
′′′
j = (0, 0, 0). Then clearly

|H1| = |H2|. We use (2.9) with y = x′′′i for some fixed i ∈ H1. Clearly, xj · x′′′i = 0 for j ∈ G̃.
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On the other hand, for j ∈ G̃, we have (recall that ‖x′′i ‖ = ‖x′′j‖ =
√

19
90

)

xj · x′′′i =
1

‖x′′i ‖
(x′j + x′′j ) · x′′i =

x′′j · x′′i
‖x′′i ‖

= ‖x′′i ‖x′′′j · x′′′i =



√
19
90
, if j ∈ H1,

−
√

19
90
, if j ∈ H2,

0, otherwise.

Thus, by (2.9), 19
90

(|H1|+ |H2|) = 76
18

, so |H1| = |H2| = 10.

We keep i ∈ H1 fixed, and choose arbitrary t ∈ H1. By (2.10) for xt, we have xt +

1
8

∑
j∈N(t) xj = 0, and multiplying by x′′′i , we obtain

√
19
90

(1 + 1
8
(|N(t)∩H1|− |N(t)∩H2|)) = 0,

so |N(t) ∩H1| = 8 + |N(t) ∩H2| for any t ∈ H1. Similarly, |N(t) ∩H2| = 8 + |N(t) ∩H1| for

any t ∈ H2.

There is only a finite number of possible subgraphs H1 ∪H2 satisfying |H1| = |H2| = 10 and

the conditions that |N(t)∩H1| = 8+|N(t)∩H2| for any t ∈ H1 and |N(t)∩H2| = 8+|N(t)∩H1|

for any t ∈ H2. The main idea for the completion of the proof is to verify that all (or almost

all) such subgraphs U = H1 ∪H2 would fail to satisfy the conditions of Proposition 2.1, which

is done with an assistance of a computer algebra system.

To generate all such possible subgraphs, we observe that if we invert the edges between H1

and H2, we obtain a regular graph of degree 2. Indeed, for each vertex t in H1 there can be either

0, 1, or 2 edges to other vertices in H1 (because |N(t)∩H1| = 8+|N(t)∩H2| ≤ |H2| = 10). Then

the number of edges from t to H2 in the inverted graph is 10− |N(t) ∩H2| = 2− |N(t) ∩H1|,

which is 2, 1, or 0, respectively. Any regular graph of degree 2 is a union of cycles, which

significantly simplifies generation of all required subgraphs.

If w is the number of edges in H1, then there are 80 + 2w edges between H1 and H2, and,

hence also w edges in H2. With π := {H1, H2}, the edge matrix is Eπ = ( w 80+2w
w ), and by

Lemma 4.5, −5776
81
w + 19760

81
≥ 0, so w ≤ 3.

Now let us briefly describe the computer verification that there can be no subgraphs H1 and

H2 satisfying the above restrictions. We begin with generating all possible decompositions of

20 into the sum of integers not smaller than 3. This gives all possibilities for decomposition of

H1∪H2 with inverted edges into the union of cycles. For each possible length of cycle (between

3 and 20), we generate all possibilities of assigning a vertex to either H1 or H2, ignoring

all assignments where the total number of consecutive pairs of vertices assigned to the same
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subgraph H1 or H2 exceeds 3 (each such pair gives an edge). We need to generate only non-

isomorphic assignments, which reduces the number of required possibilities. Next we combine

the prepared data, generate H1 ∪H2 as union of cycles, invert edges between H1 and H2, and

for each resulting possibility we perform three checks: (i) the number of edges in H1 is equal

to the number of edges in H2 and does not exceed 3; (ii) the rank of (xi · xj)i,j∈H1∪H2 does not

exceed 16; (iii) the smallest eigenvalue of (xi · xj)i,j∈H1∪H2 is non-negative. The conditions (ii)

and (iii) must be valid by Proposition 2.1. There will be only four cases when all of the above

conditions are satisfied, namely, when there are five cycles of length 4.

To handle the remaining cases, we show that there is a vertex t ∈ G̃1 such that |N(t) ∩

H1| = |N(t) ∩ H2| ≤ 3. Then, as verified by the computer, it turns out that the rank of

(xi · xj)i,j∈H1∪H2∪{t} is at least 17, which is a contradiction. We want to remark that the

computations needed for this lemma take less than 15 minutes on a modern personal computer.

It only remains to justify existence of t ∈ G̃1 such that |N(t) ∩H1| = |N(t) ∩H2| ≤ 3. First,

let t ∈ G̃1 be arbitrary. By (2.10) for xt, we have xt +
1
8

∑
j∈N(t) xj = 0, and multiplying by x′′′i ,

where i ∈ H1, we obtain |N(t)∩H1| = |N(t)∩H2|. But recall that for any vertex j ∈ H1 ∪H2,

we have |N(j)∩ G̃1| = 2, so there are 40 edges between H1 ∪H2 and G̃1. Hence, there must be

t ∈ G̃1 with no more than 40
6

neighbors in H1 ∪H2, and the claim follows. �
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